ALCF Early Science Program

ESP Kick-Off Workshop Project Plan Presentation

Cosmic Structure Probes of the Dark Universe

PI: Salman Habib (LANL)
Presenter: Salman Habib

October 18-19, 2010

Project Overview

Structure Formation in the Universe as a Cosmological Probe

- Contribute to characterization of dark energy and dark matter by predicting observational signatures for a variety of cosmological probes
 - First cosmological simulations resolving galaxy-scale mass concentrations at the scale of state-ofthe-art sky surveys
 - Suite of simulations for 'cosmic calibration'
- Investigate primordial fluctuations by predicting the effects on cosmic structures at the current epoch
 - Systematic studies of running of the spectral index, primordial non-Guassianity

Scientific Field: Cosmology

Modified HACC (Hardware-Accelerated Cosmology Code) Framework

Computational Approach, Numerical Methods

Hybrid particle/grid gravitational N-body code

- Solves the gravitational Vlasov-Poisson equation in an expanding universe
- Large dynamic range in (i) force (1:1000000) and (ii) mass (1:10000)
- Particle numbers of order 0.1-1 Trillion, FFTs in the 10000+ cubed class
- Emphasis on accuracy (max errors of order 0.1-1%)

Inter-particle interaction broken into two, roughly equally numerically intensive parts

- Long/medium-range force
 - Grid-based, spectrally-filtered, Poisson solver (FFT-based)
- Short-range force (two options)
 - · Direct particle-particle interactions (with chaining mesh)
 - · Tree algorithm

Symplectic time-stepping with adjustable time variable

- Global time-stepping with long-short sub-cycling
- 'On the Fly' analysis suite
 - Fast halo and sub-halo finders
 - Statistical tools (correlation functions, power spectrum)
 - Weak gravitational lensing pipeline (under development)

Parallelism and Existing Implementation

- Particle communication across nodes minimized using 'particle overloading' (memory cache):
 - Node has particles extending significantly beyond spatial subdomain of node (rough analog of 'ghost zones')
 - · Copies of these "passive" particles held by other nodes
 - · Single particle only "alive" in one node
 - Many steps require no particle communication
 - Refresh overloading zones as needed, only nearest-neighbor communication needed
- Digital filtering/differencing in the spectral domain
 - Simple communication templates
- MPI plus Cell BE (Roadrunner)
 - 3D domain decomposition
- MPI plus OpenCL (GPU clusters)
- Current Performance/Scalability
 - Weak scaling across entire Roadrunner
 - Large fraction of peak performance

Library and Tool Dependencies

- 'Lightweight' code with minimal dependencies (except for 'standards' such as MPI, FFTW, --)
- Libraries
 - FFTW for serial FFTs (ESSL alternatives would be useful)
 - HDF (I/O) would be useful, although not used currently (n-n read/writes)
- Tools
 - ParaView for parallel visualization and visualization-aided analysis (co-developed with LANL Paraview team)

Anticipated Modifications for Blue Gene/Q

No change needed for grid layer of code

- Performance of MPI with parallel FFT should be adequate on Mira

Node-level modifications needed

- Current code optimized for Cell-based (CPU-accelerator memory-balanced) nodes on Roadrunner and for GPU clusters with memory-imbalanced nodes
- Rewrite to exploit threads and instructions on BG/Q core, test both particle-particle and tree-based algorithms for the short-range force-solver
- Optimize real-time analysis framework for Mira

Performance and scaling needed to run proposed problem on Mira:

- State-of-the-art sky survey volume: Order of 1-100 billions of Mpc3
 - Of order 0.1–1 trillion grid cells
 - Of order 0.1-1 trillion particles
- Wall-clock of order 2 minutes per long (sub-cycled) time-step
- Keep real-time analysis 'slots' down to of order 10 minutes/slot

Plan for Next 6 Months Effort

- Help find and hire a project postdoc
- Port to Blue Gene/P
 - Complete port of long/medium-range-only version (mostly working)
 - Simultaneously start work on local force computation
- Method selection for hydro capability (fixed-mesh)
 - At smaller length scales, hydrodynamic and feedback effects from baryons significant, need this capability down the road
 - Particle-based methods likely to scale better on next-generation architectures, investigate modern hydro-PIC as alternative to SPH
- Benchmark long-range code performance
 - Use projections to estimate performance on Blue Gene/Q (mostly controlled by performance of parallel 3-D FFT)